cis-Hydroxyplatination of Dimethyl Maleate: Modeling the Intermediates in a Catalytic Alkene-Hydration Cycle with Organoplatinum(II)-Hydroxo Complexes

Martin A. Bennett,* Hong Jin, Sihai Li, Louis M. Rendina, ${ }^{1}$ and Anthony C. Willis
Contribution from the Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia

Received March 13, 1995^{8}

Abstract

Dimethyl maleate adds to the $\mathrm{Pt}-\mathrm{OH}$ bonds of $c i s-\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})\left(\mathrm{PPH}_{3}\right)_{2}(\mathbf{2}), \mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{dppe})(\mathbf{3})$, and $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{pdmp})(5)$ [dppe $=1,2$-bis(diphenylphosphino)ethane, $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$; pdmp $=o$-phenylenebis(dimethylphosphine), $\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]$ to give cis- $-\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\} \mathrm{L}_{2}\left[\mathrm{~L}_{2}=2 \mathrm{PPh}_{3}(6)\right.$, dppe (7), pdmp (8)]. Crystals of 6 are monoclinic, space group $P 2_{i} / n$, with $a=12.658(2) \AA, b=21.688(4) \AA, c=$ $14.340(2) \AA, \beta=97.25(1)^{\circ}$, and $Z=4$. The structure was solved by the heavy atom method and refined by leastsquares analysis to $R=0.027$ and $R_{w}=0.032$ based on 4508 unique observed reflections. The platinum atom is planar-coordinated by two cis- PPh_{3} ligands, a methyl group $[r(\mathrm{Pt}-\mathrm{C})=2.111(6) \AA]$, and a $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ group $[r(\mathrm{Pt}-\mathrm{C})=2.152(7) \AA]$. The threo- $\left(R^{*}, R^{*}\right)$-configuration of the $\mathrm{PtCH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ moiety indicates that dimethyl maleate undergoes syn addition to the $\mathrm{Pt}-\mathrm{OH}$ bond of 2 , probably by cis-migratory insertion into the $\mathrm{Pt}-\mathrm{OH}$ bond of a five-coordinate intermediate $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-(Z)-\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{CHCO}_{2}\right.$ $\mathrm{Me})$. Dimethyl maleate does not insert into the $\mathrm{Pt}-\mathrm{OH}$ bonds of trans $-\mathrm{Pt}(\mathrm{OH})\left(\mathrm{Ph}^{2}\left(\mathrm{PEt}_{3}\right)_{2}(\mathbf{1})\right.$ or $\mathrm{Pt}(\mathrm{OH})\left(\mathrm{CF}_{3}\right)(\mathrm{dppe})$ (4), and dimethyl fumarate is inert toward 1,2 , and 4 , but it reacts with 5 to give the monomethyl fumarato complex $\mathrm{PtMe}\left\{(E)-\mathrm{OC}(\mathrm{O}) \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right\}$ (pdmp) (9). Treatment of 6 or 7 with aqueous acids cleaves their $\mathrm{Pt}-\mathrm{CH}\left(\mathrm{CO}_{2}\right.$ $\mathrm{Me}) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ bonds forming $\left[\mathrm{PtMe}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{L}_{2}\right]^{+}$and dimethyl malate, $\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Me}$, thus demonstrating two steps necessary for catalysis of addition of water to dimethyl maleate.

Introduction

The catalytic hydration of terminal alkenes to primary alcohols at ambient temperature and pressure has been listed as one of the challenges of industrial catalysis. ${ }^{2}$ Both enzymes and transition metal complexes can catalyze the hydration of alkenes, mainly those having electron-withdrawing substituents. The enzyme fumarase reversibly converts fumarate to L-malate and aconitase reversibly adds water to enzyme-bound cisaconitate to give either isocitrate or citrate. ${ }^{3}$ Chlororuthenate(II) complexes catalyze the hydration of 1,1-difluoroethylene and vinyl fluoride, ${ }^{4}$ and maleic acid can be converted into malic acid by various compounds of aluminum(III) and chromium(III). ${ }^{5}$ Di- μ-hydroxo complexes $\left[\mathrm{Pd}_{2}\left(\mu_{2}-\mathrm{OH}\right)_{2}\left(\mathrm{~L}_{2}\right)_{2}\right]^{2+}\left(\mathrm{L}_{2}=\right.$ dppe, dcpe) ${ }^{6}$ catalyze the hydration of diethyl maleate to diethyl malate, though with low turnover number. ${ }^{7}$ The reported direct anti-Markovnikov hydration of terminal alkenes catalyzed by trans $-\mathrm{PtHCl}\left(\mathrm{PMe}_{3}\right)_{2}$ in the presence of aqueous NaOH and a phase-transfer catalyst at $60-100{ }^{\circ} \mathrm{C}$ has unfortunately proved to be irreproducible. ${ }^{9}$ Finally, acyclic 1,3-dienes, such as butadiene and isoprene, undergo tail-to-tail dimerization and

[^0]addition of water to give octadienols in the presence of palladium catalysts such as $\mathrm{Pd}(\mathrm{acac})_{2} / \mathrm{PPh}_{3}$ or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} ;{ }^{10}$ under similar conditions, allene gives 3-methyl-2-methylene-3-buten-1-ol. ${ }^{11}$
In the palladium-catalyzed hydration reactions and in the oxidative hydrolysis of alkenes (the Wacker process), monomeric hydroxopalladium(II) complexes may play an important role. ${ }^{12}$ Monomeric hydroxoplatinum(II) complexes $\mathrm{Pt}(\mathrm{OH})(\mathrm{R})$ $\mathrm{L}_{2}\left(\mathrm{~L}=\right.$ various tertiary phosphines; $\left.\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}, \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}_{9}\right)$ catalyze the hydration of nitriles to carboxamides ${ }^{13}$ and, for R $=\mathrm{CF}_{3}$, in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$, the epoxidation of alkenes; ${ }^{14}$ moreover, the $\mathrm{Pt}-\mathrm{O}$ bond undergoes insertion with simple molecules such as $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{RCN}$, and RNC. ${ }^{15}$ So far, however, little is known about the reactions of these and related complexes with olefins, although such reactions could play an important part in homogeneously catalyzed olefin hydration. Tetrafluo-
(9) Ramprasad, D.; Yue, H. J.; Marsella, J. A. Inorg. Chem. 1988, 27, 3151.
(10) (a) Atkins, K. E.; Walker, W. E.; Manyik, R. M. J. Chem. Soc., Chem. Commun. 1971, 330. (b) Zakharkin, L. I.; Babich, S. A.; Pisareva, I. V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1976, 25, 1531. (c) Dzhmeiler, U. M.; Sidorova, V. V.; Kunakova, R. V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1983, 32, 525. (d) Bianchini, J.-P.; Waegell, B.; Gaydou, E. M.; Rzchak, H.; Keim, W. J. Mol. Catal. 1981, 10, 247. (e) Inoue, Y.; Sato, M.; Satake, M.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1983, 56, 637.
(11) Inoue, Y.; Otsuka, Y.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1984, 57, 3345.
(12) (a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.; Wiley: New York, 1992; p 138. (b) Masters, C. Homogeneous Catalysis-A Gentle Art; Chapman and Hall; London, 1981; p 186.
(13) (a) Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1973, 95, 3030. (b) Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. J. Am. Chem. Soc. 1979, 101, 2027. (c) Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199, 119. (d) Jensen, C. M.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 723.
(14) (a) Strukul, G.; Michelin, R. A. J. Am. Chem. Soc. 1985, 107, 7563. (b) Zanardo, A.; Pinna, F.; Michelin, R. A.; Strukul, G. Inorg. Chem. 1988, 27, 1966. (c) Zanardo, A.; Michelin, R. A.; Pinna, F.; Strukul, G. Inorg. Chem. 1989, 28, 1648. (d) Sinigalla, R.; Michelin, R. A.; Pinna, F.; Strukul, G. Organometallics 1987, 6, 728.

Table 1. NMR $\left({ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\right)$ Data for $c i s-\mathrm{PtMe}\left\{\mathrm{CH}^{\mathrm{A}}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}^{\mathrm{B}}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\} \mathrm{L}_{2}(6-8)^{a}$

	$\delta\left({ }^{1} \mathrm{H}\right)$						$\delta\left({ }^{31} \mathrm{P}\right)$	
L_{2}	Pt -Me	$\alpha-\mathrm{CO}_{2} \mathrm{Me}$	$\beta-\mathrm{CO}_{2} \mathrm{Me}$	OH	$\mathrm{H}^{\text {A }}$	$\mathrm{H}^{\text {B }}$	P trans to Me	P cis to Me
$2 \mathrm{PPh}_{3}(6)$	$\begin{gathered} 0.45\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}\right. \\ 7.0,7.8, \\ \left.2 J_{\mathrm{PH}} 62\right) \end{gathered}$	3.63 (s, $\left.{ }^{5} J_{\text {PrH }} 3.9\right)$	3.75 (s)	$\begin{aligned} & 2.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right. \\ & \left.7.0,{ }^{4} J_{\mathrm{P}_{\mathrm{HH}}} 2.8\right) \end{aligned}$	$\begin{aligned} & 2.97 \text { (ddd, }{ }^{3} J_{\mathrm{HH}} 10.0, \\ & { }^{3} J_{\mathrm{PH}} 16.6,10.8, \\ & \left.{ }^{2} J_{\mathrm{PH}} 108\right) \end{aligned}$		$\begin{gathered} 29.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}} 11,\right. \\ \left.{ }_{1}^{1} J_{\mathrm{PPP}} 2007\right) \end{gathered}$	$\underset{\left.{ }_{1}^{26.4(\mathrm{~d},}{ }^{2} J_{\mathrm{PPP}} 2501\right)}{ }$
dppe (7) ${ }^{\text {b }}$	$\begin{gathered} 0.48\left(\mathrm{dd}, 3 J_{\mathrm{PH}}\right. \\ 6.8,6.8, \\ \left.2 J_{\mathrm{PHH}} 65\right) \end{gathered}$	3.34 (s, $\left.{ }^{5} \mathrm{JPRH} 4.0\right)$	3.45 (s)	$\begin{aligned} & 2.64\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right. \\ & \left.8.2,4{ }^{2}{ }_{P_{\mathrm{PH}}} 2.6\right) \end{aligned}$	$\begin{aligned} & 3.10\left(d d d, J_{\mathrm{HH}} 9.4,\right. \\ & \left.{ }^{3} J_{\mathrm{PH}} 9.5,{ }_{2} J_{\mathrm{PH}} 108\right) \end{aligned}$	$\begin{aligned} & 4.03 \text { (ddd, }{ }^{3}{ }^{3} J_{\mathrm{HH}} 9.0 \\ & { }^{3} \mathrm{H}(\mathrm{HOH}) \\ & \left.1.6 .2,{ }^{4} J_{\mathrm{PH}} 8,16\right) \end{aligned}$	47.5 (s, $\left.{ }^{1} \mathrm{~J}_{\mathrm{PIP}} 1802\right)$	46.6 ($\mathrm{s},{ }^{1} \mathrm{JPRP} 2404$)
$\mathrm{pdmp}(\mathbf{8})^{\text {c.d }}$	1.11-1.22e	3.30 (s)	3.49 (s)	$\begin{gathered} 3.39(\mathrm{br} \mathrm{~d}, \\ \left.{ }_{3}^{3} J_{\mathrm{HH}}^{8.3}\right) \end{gathered}$	$\begin{gathered} 3.66\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}} 8.3,\right. \\ 3_{\mathrm{PH}} 10.8,10.8, \\ \left.{ }^{2} J_{\mathrm{PH}} 110\right) \end{gathered}$	$5.31\left(\mathrm{br} \mathrm{dd},{ }^{3}{ }^{3}{ }_{\mathrm{HH} \mathrm{HH})} 8.3,3\right)$	$27.6\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPP}} 1794\right)$	$23.4\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{PPP}} 2318\right)$

[^1]roethylene inserts into the $\mathrm{Pt}-\mathrm{O}$ bond of $\mathrm{Pt}(\mathrm{OMe})(\mathrm{Me})(\mathrm{dppe})$ to give $\mathrm{Pt}\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{OMe}\right)(\mathrm{Me})(\mathrm{dppe})$, which has been fully characterized by spectroscopic methods and by single-crystal X-ray analysis. ${ }^{16,17}$ Although full details have not been published, the initial product of insertion of $\mathrm{C}_{2} \mathrm{~F}_{4}$ into the $\mathrm{Pt}-$ OH bond of $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{dppe}), \mathrm{Pt}\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{OH}\right)(\mathrm{Me})(\mathrm{dppe})$, is reported to rearrange to the O-bonded species $\mathrm{Pt}\left(\mathrm{OCF}_{2} \mathrm{CF}_{2} \mathrm{H}\right)$ (Me)(dppe), formally resulting from insertion into the $\mathrm{O}-\mathrm{H}$ bond. ${ }^{15}$ Recently, the insertion of ethylene into the $\mathrm{Ir}-\mathrm{OH}$ bond or $\operatorname{Ir}(\mathrm{OH})(\mathrm{Ph})\left(\mathrm{PMe}_{3}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ to give the β-hydroxyethyl complex $\operatorname{Ir}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)(\mathrm{Ph})\left(\mathrm{PMe}_{3}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ has been reported. ${ }^{18}$ We describe here the stoichiometric insertion of dimethyl maleate, (Z) $-\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{CHCO}_{2} \mathrm{Me}$, into $\mathrm{Pt}-\mathrm{OH}$ bonds and show that it probably proceeds by a cis migration of hydroxide to the coordinated olefin.

Experimental Section

Reactions were performed under an atmosphere of nitrogen with use of standard Schlenk techniques and of solvents that had been distilled, dried, and degassed. The following instruments were used to obtain NMR spectra: Varian XL200E (${ }^{1} \mathrm{H}$ at $200.0 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $50.29 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 80.98 MHz , and ${ }^{19} \mathrm{~F}$ at 188.20 MHz), Varian Gemini (${ }^{1} \mathrm{H}$ at 300.1 MHz), Jeol FX-200 (${ }^{1} \mathrm{H}$ at 200.0 MHz and ${ }^{13} \mathrm{C}$ at 50.1 MHz), and Jeol FX-60 (${ }^{31} \mathrm{P}$ at 24.2 MHz). Chemical shifts (δ) are reported in ppm to high frequency of internal $\mathrm{Me}_{4} \mathrm{Si}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$), internal $\mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\right)$, or external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)$. Coupling constants (J) are in Hz . Quoted multiplicities do not include ${ }^{195} \mathrm{Pt}$ satellites. The NMR spectroscopic data for complexes 6-8 are summarized in Table 1. IR spectra were recorded as KBr disks in the range $4000-250 \mathrm{~cm}^{-1}$ on Perkin-Elmer 683 and 1800 spectrometers. Melting points (uncorrected) were determined in nitrogen-filled capillaries on a Gallenkamp melting-point apparatus. Elemental analyses were performed in-house.

Starting Materials. Dimethyl maleate was dried and distilled over $4 \AA$ molecular sieve prior to use. All other chemicals were AR grade and were used without further purification. The crystalline 1:1 adduct of hydrogen chloride with dimethylacetamide, DMA $\cdot \mathrm{HCl}$, was prepared by bubbling HCl gas slowly into a 10% solution of DMA in benzene. The resulting white precipitate was washed with benzene and ether and stored in a desiccator. The ligand pdmp ${ }^{19}$ and the complexes $\mathrm{Pt}_{2}-$ $\mathrm{Me}_{4}\left(\mu_{2}-\mathrm{SMe}_{2}\right)_{2}{ }^{20}$ trans $-\mathrm{PtI}(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2},{ }^{21}$ trans $-\mathrm{PtBr}\left(\mathrm{CF}_{3}\right)\left(\mathrm{PPh}_{3}\right){ }_{2}{ }^{22}$ trans $\mathrm{Pt}(\mathrm{OH})(\mathrm{Ph})\left(\mathrm{PEt}_{3}\right) 2,{ }^{13 \mathrm{c}, 23}$ and $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{dppe})^{24}$ were prepared by the appropriate literature procedures. The preparations of other starting materials are described below.
(15) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163 and references cited therein.
(16) Bryndza, H. E.; Calabrese, J. C.; Wreford, S. S. Organometallics 1984, 3, 1603.
(17) Bryndza, H. E. Organometallics 1985, 4, 406.
(18) Woerpel, K. A.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 7888.
(19) Kyba, E. P.; Liu, S.-T.; Harris, R. L. Organometallics 1983, 2, 1877.
(20) Scott, J. D.; Puddephatt, R. J. Organometallics 1983, 2, 1643.
(21) Chatt, J.; Shaw, B. L. J. Chem. Soc. 1959, 705.
(22) Michelin, R. A.; Napoli, M.; Ros, R. J. Organomet. Chem. 1979, 175, 239.
(23) Bennett, M. A.; Rokicki, A. Inorg. Synth. 1989, 25, 110.
(24) Appleton, T. G.; Bennett, M. A. Inorg. Chem. 1978, I7, 738.
(a) $\operatorname{PtBr}\left(\mathrm{CF}_{3}\right)$ (dppe). This was prepared in 60% yield from $\mathrm{PtBr}-$ $\left(\mathrm{CF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ and dppe in benzene, following the procedure described in ref 22 for the corresponding cis- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ complex. It formed colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-21.5\left(\mathrm{dd},{ }^{3} J_{\mathrm{PF}}=57.8,13.4,{ }^{2} J_{\mathrm{PF}}=572\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 42.8\left(\mathrm{dq},{ }^{3} J_{\mathrm{PF}}=13.4,{ }^{2} J_{\mathrm{PP}}=5.8,{ }^{1} J_{\mathrm{PPP}}=3930, \mathrm{P}\right.$ trans to $\mathrm{Br}), 39.7\left(\mathrm{dq},{ }^{3} J_{\mathrm{PF}}=57.1,{ }^{2} \mathrm{~J}_{\mathrm{PP}}=5.8,{ }^{1} \mathrm{~J}_{\mathrm{PPP}}=1821, \mathrm{P}\right.$ trans to $\left.\mathrm{CF}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrF}_{3} \mathrm{P}_{2} \mathrm{Pt}: \mathrm{C}, 43.68 ; \mathrm{H}, 3.26 ; \mathrm{P}, 8.34 ; \mathrm{Br}, 10.76$. Found: C, $43.90 ; \mathrm{H}, 3.32 ; \mathrm{P}, 8.53 ; \mathrm{Br}, 10.98$.
(b) $\mathbf{P t}(\mathbf{O H})\left(\mathbf{C F}_{3}\right)(\mathbf{d p p e})$ (4). The procedure followed that of ref 22 for the corresponding cis- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ complex. After recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{H}_{6}$, the product was obtained as colorless microcrystals in 81% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.90(\mathrm{~s}, \mathrm{OH})$. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-28.6\left(\mathrm{dd},{ }^{3} J_{\mathrm{PF}}=55.0,9.2,{ }^{2} J_{\mathrm{PF}}=589\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 33.3\left(\mathrm{dqq},{ }^{3} J_{\mathrm{PF}}=9.5,{ }^{2} J_{\mathrm{PP}}=4.6,{ }^{1} \mathrm{~J}_{\mathrm{PTP}}=\right.$ $3271, \mathrm{P}$ trans to OH$), 35.2\left(\mathrm{dq},{ }^{3} J_{\mathrm{PF}}=58.4,{ }^{2} J_{\mathrm{PP}}=4.6,{ }^{1} \mathrm{JPIP}=2067\right.$, P trans to CF_{3}). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3620 \mathrm{~m}[\nu(\mathrm{OH})]$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{OP}_{2} \mathrm{Pt}-0.5 \mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{C}, 50.14, \mathrm{H}, 3.93 ; \mathrm{P}, 8.62$. Found: $\mathrm{C}, 49.91$; H, 3.80; P, 8.45.
(c) cis- $\mathbf{P t}(\mathbf{O H})(\mathbf{M e})\left(\mathbf{P P h}_{3}\right)_{2}$ (2). We found that the reported method of preparation ${ }^{25}$ gave the acetonyl complex cis- $\mathrm{PtMe}\left(\mathrm{CH}_{2} \mathrm{COMe}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}$, which was presumably formed by reaction of the initially formed hydroxo complex with the acetone used as solvent; we therefore modified the procedure as follows.
To a stirred suspension of trans-PtI(Me) $\left(\mathrm{PPh}_{3}\right)_{2}(0.64 \mathrm{~g}, 0.74 \mathrm{mmol})$ in acetone (25 mL) was added $\mathrm{AgBF}_{4}(0.15 \mathrm{~g}, 0.77 \mathrm{mmol})$. The mixture was kept in the absence of light for 1 h , the precipitated AgI was removed by centrifugation, and the clear, colorless solution was evaporated to dryness in vacuo. The off-white residue was treated with THF (10 mL) and the cloudy suspension was stirred at room temperature for 10 min . The solvent was removed in vacuo and the THF treatment was repeated several times. Finally, to the THF solution was added dropwise a solution of $\mathrm{KOH}(0.06 \mathrm{~g}, 1.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$, giving immediately a clear, pale-yellow solution with a small amount of black solid. The mixture was stirred at room temperature for 48 h , and the solvents were removed in vacuo. Recrystallization of the residue from $\mathrm{C}_{6} \mathrm{H}_{6} /$ ether gave 2 as colorless microcrystals ($0.50 \mathrm{~g}, 83 \%$), mp 208$210^{\circ} \mathrm{C}(\mathrm{dec})$. The yield is significantly lowered if the reactants are heated at any stage. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.55\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=8.2,6.0\right.$, $\left.{ }^{2} J_{\mathrm{PPH}}=44.4, \mathrm{PtOH}\right), 1.10\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=7.1,4.4,{ }^{2} J_{\mathrm{PH}}=64.6, \mathrm{PtMe}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=10.7,{ }^{1} J_{\mathrm{PRP}}=1745, \mathrm{P}\right.$ trans to $\mathrm{Me}), 18.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PP}}=10.7,{ }^{1} \mathrm{~J}_{\mathrm{PPP}}=3608, \mathrm{P}\right.$ trans to OH). IR (Nujol, cm^{-1}): $3610 \mathrm{w}[v(\mathrm{OH})]$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{OP}_{2} \mathrm{Pt}: \mathrm{C}, 59.12 ; \mathrm{H}$, 4.56; P, 8.24. Found: C, 58.67 ; H, 4.43; P, 7.94.
(d) $\mathbf{P t M e}_{2}$ (pdmp). Although this compound can be made by addition of pdmp to $\mathrm{PtMe}_{2}(\mathrm{COD})$, higher yields were obtained by the following procedure. To a rapidly stirred suspension of $\mathrm{Pt}_{2} \mathrm{Me}_{4}\left(\mu_{2^{-}}\right.$ $\left.\mathrm{SMe}_{2}\right)_{2}(2.00 \mathrm{~g}, 3.48 \mathrm{mmol})$ in toluene $(40 \mathrm{~mL})$ was added pdmp (1.37 $\mathrm{g}, 6.92 \mathrm{mmol}$). The mixture was stirred at room temperature for 0.5 h and solvent was removed in vacuo. The resulting white solid was washed with three portions of hexane (20,10 , and 10 mL) and dried in vacuo. The yield of $\mathrm{PtMe}_{2}(\mathrm{pdmp})$ was 2.48 g (84%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.76,7.56\left(\mathrm{br} \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 1.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.4,{ }^{3} J_{\mathrm{PH}}=23.1\right.$, PMe_{2}), 0.49 (t, sepn between outer lines $\left.=15.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=68.1, \mathrm{PtMe}\right)$.
(25) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., Dalton Trans. 1976, 993.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 25.3\left({ }^{1} \mathrm{~J}_{\mathrm{PtP}}=1763\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{P}_{2} \mathrm{Pt}: \mathrm{C}, 34.05 ; \mathrm{H}, 5.24 ; \mathrm{P}, 14.63$. Found: C, $34.96 ; \mathrm{H}, 5.59$; P, 14.75 .
(e) $\mathbf{P t C l}(\mathbf{M e})(\mathbf{p d m p})$. A solution of $\mathrm{PtMe}_{2}(\mathrm{pdmp})(1.45 \mathrm{~g}, 3.43$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was treated with a solution of DMA $\cdot \mathrm{HCl}$ $(0.40 \mathrm{~g}, 3.25 \mathrm{mmol})$, and the mixture was stirred for 0.5 h at room temperature (caution: evolution of methane). Solvent was removed under reduced pressure and the residue was washed with several portions of ether to give $\mathrm{PtCl}(\mathrm{Me})(\mathrm{pdmp})$ as a white solid, which was dried in vacuo. The yield was $1.35 \mathrm{~g}(88 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: δ $7.82-7.60\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 1.85\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=11.3,{ }^{3} J_{\mathrm{PH}}=51.8, \mathrm{PMe}_{2}\right), 1.76$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{PH}}=9.5,{ }^{3} \mathrm{~J}_{\mathrm{PH}}=16.1, \mathrm{PMe}_{2}\right), 0.51\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=7.8,3.6,{ }^{2} J_{\mathrm{P} \mathrm{PH}}=\right.$ 53.6, PtMe $) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 33.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=3,{ }^{1}{ }^{\mathrm{JPRP}}=\right.$ $1730, \mathrm{P}$ trans to Me$), 18.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=3,{ }^{1} J_{\mathrm{PPP}}=4030, \mathrm{P}\right.$ trans to Cl$)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{ClP}_{2} \mathrm{Pt}$: C, 29.77; $\mathrm{H}, 4.32 ; \mathrm{Cl}, 7.99 ; \mathrm{P}, 13.96$. Found: C, 29.93; H, 4.35; Cl, 7.55; P, 13.94.
(f) $\mathbf{P t}(\mathbf{O H})(\mathbf{M e})$ (pdmp) (5). (i) To a suspension of $\mathrm{PtCl}(\mathrm{Me})(\mathrm{pdmp})$ ($0.05 \mathrm{~g}, 0.11 \mathrm{mmol}$) in THF (10 mL) was added a solution of KOH $(0.09 \mathrm{~g}, 1.6 \mathrm{mmol})$ in water (1 mL). The mixture was stirred for 3 h at room temperature and evaporated to dryness in vacuo, ensuring that most of the water was removed. The residue was extracted with THF $(20 \mathrm{~mL})$ and the extract was centrifuged to remove insoluble solids. The solution was evaporated under reduced pressure to a volume of $c a .3 \mathrm{~mL}$ and hexane (20 mL) was added with rapid stirring. The resulting colorless solid was washed with hexane ($2 \times 5 \mathrm{~mL}$) and dried in vacuo to give $5(0.04 \mathrm{~g}, 85 \%)$.
(ii) A suspension of $\mathrm{PtCl}(\mathrm{Me})(\mathrm{pdmp})(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was treated with $\mathrm{AgBF}_{4}(0.11 \mathrm{~g}, 0.57 \mathrm{mmol})$. The mixture was stirred in the dark for 1 h and centrifuged. The supernatant liquid was treated with a solution of $\mathrm{KOH}(0.16 \mathrm{~g}, 2.86 \mathrm{mmol})$ in water (1 mL), the mixture was stirred for 5 min , and solvent was removed in vacuo. The residue was extracted with THF ($3 \times 15 \mathrm{~mL}$) and the extract was centrifuged to remove solids. Solvent was removed in vacuo to give $5(0.12 \mathrm{~g}, 63 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.23-6.82(\mathrm{~m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 1.61\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=9.3,{ }^{3} J_{\mathrm{PH}}=18.0, \mathrm{PMe}_{2}\right), 1.23\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.4\right.$, $\left.{ }^{3} J_{\mathrm{PHH}}=40.4, \mathrm{PMe}_{2}\right), 0.90\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=7.6,3.6,{ }^{2} J_{\mathrm{PH}}=59.3, \mathrm{PtMe}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 29.5\left({ }^{1} \mathrm{~J}_{\mathrm{PRP}}=1857, \mathrm{P}\right.$ trans to Me), $7.1\left({ }^{1} J_{\mathrm{PRP}}\right.$ $=3309, \mathrm{P}$ trans to OH$) . \operatorname{IR}\left(\mathrm{THF}, \mathrm{cm}^{-1}\right): 3509 \mathrm{~m}[\nu(\mathrm{OH})]$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OP}_{2} \mathrm{Pt}: \mathrm{C}, 31.06 ; \mathrm{H}, 4.74$; P, 14.57. Found: C, 30.86; H, 4.64; P, 14.81.

Reactions of Hydroxo Complexes with Dimethyl Maleate. (a) A solution of cis- $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{2})(0.10 \mathrm{~g}, 0.13 \mathrm{mmol})$ in benzene (30 mL) was treated with dimethyl maleate $(0.20 \mathrm{~mL}, 1.60 \mathrm{mmol}$, excess) and the mixture was stirred at room temperature for 3 days. The solvent was removed by evaporation under reduced pressure to give a colorless residue, which was washed with ether $(2 \times 5 \mathrm{~mL})$ and benzene/ether (1:2) (2 mL) to give cis- $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2}-\right.\right.$ $\mathrm{Me})\}\left(\mathrm{PPh}_{3}\right)_{2}(6)(0.10 \mathrm{~g}, 84 \%)$ as a white powder, mp $151-155{ }^{\circ} \mathrm{C}$ dec. The same compound was formed over a period of 1.5 days in THF. Crystals for X-ray analysis were grown by slow diffusion of ether into a solution of 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3580 (sharp) $[\nu(\mathrm{OH})], 1730 \mathrm{~s}, 1680 \mathrm{~s}[\nu(\mathrm{C}=\mathrm{O})]$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pt}$: C, 55.65; H, 4.73; P, 6.92. Found: C, 56.71; H, 4.63; P, 6.41.
(b) A suspension of $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{dppe})(\mathbf{3})(0.10 \mathrm{~g}, 0.16 \mathrm{mmol})$ in benzene (20 mL) was treated with dimethyl maleate ($0.40 \mathrm{~mL}, 3 \mathrm{mmol}$, excess) and the mixture was stirred at room temperature for 5 days. Removal of solvent in vacuo gave initially a yellow oil, which after a few hours turned into an off-white solid. This was shown by NMR spectroscopy (see text and Table 1) to be mainly $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right.$ $\left.\mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right](\mathrm{dppe})(7)$, together with unidentified impurities. An analytically pure sample was obtained by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether, but the yield was only $0.02 \mathrm{~g}(16 \%)$. IR $\left(\mathrm{KBr}_{\mathrm{cm}} \mathrm{cm}^{-1}\right): 3430 \mathrm{w}$ br $[v(\mathrm{OH})], 1730 \mathrm{~s}, 1670 \mathrm{~s}[v(\mathrm{C}=\mathrm{O})] ;\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3589 \mathrm{~m}[\nu(\mathrm{OH})], 1735$ $\mathrm{s}, 1684 \mathrm{~s}[\nu(\mathrm{C}=\mathrm{O})]$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pt}: \mathrm{C}, 51.50 ; \mathrm{H}, 4.71$; P, 8.05. Found: C, 51.31; H, 4.46; P, 7.94. The same product was obtained by treatment of $\mathbf{3}(0.15 \mathrm{~g}, 0.24 \mathrm{mmol}$) dissolved in THF (20 mL) with dimethyl maleate ($0.04 \mathrm{~mL}, c a .0 .3 \mathrm{mmol}$) for 7 days.
(c) To a solution of $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{pdmp})(5)(0.03 \mathrm{~g}, 0.07 \mathrm{mmol})$ in benzene (10 mL) was added dimethyl maleate ($0.10 \mathrm{~mL}, 0.80 \mathrm{mmol}$). The mixture was stirred at room temperature for 12 days and solvent was removed by evaporation in vacuo. The residue was dissolved in benzene (5 mL) and the solution was centrifuged to remove some solid (mainly unchanged 5, as shown by NMR spectroscopy). Addition of
hexane precipitated $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{pdmp}) \cdot \mathrm{H}_{2} \mathrm{O}$ (8) as a white powder ($0.01 \mathrm{~g}, 25 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: 3450 w br $[\nu(\mathrm{OH})], 1717 \mathrm{~s}, 1652 \mathrm{~s}[\nu(\mathrm{C}=\mathrm{O})]$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$: C, 34.76; H, 5.15; P, 10.54. Found: C, 34.54: H, 4.53; P, 10.14.

Under the same conditions, trans- $\mathrm{Pt}(\mathrm{OH})\left(\mathrm{Ph}^{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}(\mathbf{1})$ and $\mathrm{Pt}(\mathrm{OH})-$ $\left(\mathrm{CF}_{3}\right)$ (dppe) (4) did not react with dimethyl maleate.

Reaction of $\mathrm{Pt}(\mathbf{O H})(\mathrm{Me})(\mathrm{pdmp})(5)$ with Dimethyl Fumarate. A suspension of $5(0.05 \mathrm{~g}, 0.12 \mathrm{mmol})$ in benzene (20 mL) was treated with dimethyl fumarate ($0.17 \mathrm{~g}, 1.18 \mathrm{mmol}$), and the mixture was stirred for 20 days. The volume of the solution was reduced to $c a .5 \mathrm{~mL}$ in vacuo and hexane (20 mL) was added with rapid stirring. The resulting white solid was washed with hexane ($2 \times 10 \mathrm{~mL}$) and dried in vacuo. The yield of $\mathrm{PtMe}\left\{(E)-\mathrm{OC}(\mathrm{O}) \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right\}(\mathrm{pdmp})(9)$ was 0.05 g (77%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=15.7,=\mathrm{CH}\right), 7.36\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=15.7,=\mathrm{CH}), 6.98\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.28\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 1.75\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=9.7\right.$, $\left.{ }^{3} J_{\mathrm{PHH}}=15.8, \mathrm{PMe}_{2}\right), 1.22\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=11.1,{ }^{3} J_{\mathrm{PH}}=49.9, \mathrm{PMe}_{2}\right), 1.14$ (dd, $\left.{ }^{3} J_{\mathrm{PH}}=8.1,2.9,{ }^{2} J_{\mathrm{PH}}=47.2, \mathrm{PtMe}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $33.0\left({ }^{1} J_{\mathrm{PPP}}=1801, \mathrm{P}\right.$ trans to Me$), 10.1\left({ }^{1} J_{\mathrm{PPP}}=3975, \mathrm{P}\right.$ trans to $\mathrm{O}_{2}-$ $\left.\mathrm{CCH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 1721 \mathrm{~s}, 1620 \mathrm{~s}[\nu(\mathrm{C}=\mathrm{O})]$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$: C, $35.76 ; \mathrm{H}, 4.50 ; \mathrm{P}, 11.53$. Found: C, 35.77; H, 4.46; P, 11.42.

There was no observable reaction between $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})($ dppe $)$ and dimethyl fumarate at room temperature. In an NMR tube at $50-55$ ${ }^{\circ} \mathrm{C}$ with $\mathrm{C}_{6} \mathrm{D}_{6}$ as the solvent several species formed. The presence of the dppe analogue of 9 was evident from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum: $\delta 49.0$ (${ }^{1} J_{\mathrm{PPP}}=1791$, P trans to Me), $36.4\left({ }^{1} \mathrm{~J}_{\mathrm{PPP}}=4189\right.$, P trans to $\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCO}_{2} \mathrm{Me}$).

Reactions of cis $-\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\} \mathrm{L}_{2}\left[\mathrm{~L}_{2}=\right.$ $\mathbf{2} \mathbf{P P h}_{3}$ (6), dppe (7)] with Aqueous Acids. One drop of aqueous acid [$\mathrm{HBF}_{4}(43 \%)$ or $\left.\mathrm{HPF}_{6}(60 \%)\right]$ was added to a solution of 6 or 7 (0.05 g) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or THF- $d_{8}(0.5 \mathrm{~mL})$ in a 5 mm NMR tube, and the ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was recorded immediately. The resulting cationic aquaplatinum(II) complexes $\left[\mathrm{PtMe}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{L}_{2}\right]^{+}$were characterized in situ. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{THF}-d_{8}\right)$ (addition of $\mathrm{HPF}_{6}(\mathrm{aq})$ to 7): $\delta 46.2\left({ }^{1} \mathrm{JPRP}=\right.$ $1771, \mathrm{P}$ trans to Me), 33.1 (${ }^{1} \mathrm{~J}_{\mathrm{PrP}}=4182$, P trans to $\mathrm{H}_{2} \mathrm{O}$). The ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in THF- d_{8} was identical to that obtained when one drop of $\mathrm{HPF}_{6}(\mathrm{aq})$ was added to $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{dppe})(\mathbf{3})$ in $\mathrm{THF}-d_{8}$ to give $\left[\mathrm{PtMe}\left(\mathrm{OH}_{2}\right)(\mathrm{dppe})\right] \mathrm{PF}_{6} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ (addition of $\mathrm{HBF}_{4}(\mathrm{aq})$ to 6): $\delta 31.5\left({ }^{1} J_{\mathrm{PPP}}=3140\right)$. The spectrum recorded in $\mathrm{CD}_{2}-$ Cl_{2} was identical to that obtained when 2 was treated similarly to generate trans- $\left[\mathrm{PtMe}\left(\mathrm{OH}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$. The $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution formed by acidification of $\mathbf{2}$ was washed with water. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the solvent was removed under reduced pressure to give dimethyl malate, $\mathrm{MeO}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Me}$, as a colorless oil (ca. 80%). The compound is readily hydrolyzed to the free acid in aqueous solution, so isolation must be carried out as quickly as possible. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) ; \delta 4.47\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.5,4.5, \mathrm{CH}\right)$, 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.65 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.30 (vbr s, OH), 2.78 $\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.3,{ }^{3} J_{\mathrm{HH}}=4.5, \mathrm{CHH}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.3\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=6.5, \mathrm{CH} H\right)$. IR (cm^{-1}, neat): 3480 vs br $[\nu(\mathrm{OH})], 1740 \mathrm{vs}$ $[\nu(\mathrm{C}=\mathrm{O})], 1300-1160 \mathrm{vs}$ br, $1110 \mathrm{vs}, 1045 \mathrm{~s}[\nu(\mathrm{C}-\mathrm{O})]$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}: \mathrm{C}, 44.45 ; \mathrm{H}, 6.22$. Found: C, $44.23 ; \mathrm{H}, 6.51$.

Crystallography. Data were collected on a colorless crystal of dimensions $0.07 \times 0.23 \times 0.25 \mathrm{~mm}$. Reflection intensities were recorded on a Philips PW 1100/20 diffractometer using graphite monochromated Mo $K \alpha$ radiation. Lattice parameters were calculated from a least-squares analysis of setting angles for 25 reflections [$40<$ $2 \theta<45^{\circ}, \lambda($ Mo $\left.K \alpha)=0.70930 \AA\right]$. A total of 6163 unique reflections, of which 4508 , with $I \geq 3 \sigma(I)$, were treated as observed, was collected by means of $\theta-2 \theta$ scans of width $(0.9+0.346 \tan \theta)^{\circ}$ in θ at a rate of $1.0 \mathrm{deg} \mathrm{min}^{-1}$ with 10 s background counts on each side of every scan; $2 \theta_{\max }=48^{\circ}$ with $-14 \leq h \leq 14,0 \leq k \leq 23$, and $0 \leq l \leq 16$. Three check reflections measured every 120 min showed a 9% decrease in intensity during data collection, so a decomposition correction was applied to all data. ${ }^{26}$ Data were corrected for absorption ($A^{*}=2.364$ - 1.289). A summary of crystallographic data is given in Table 2. The structure was solved by heavy-atom techniques (SHELXS-86). ${ }^{27}$ Refinement was performed by full-matrix least-squares methods with anisotropic displacement factors for all non-hydrogen atoms. Hydrogen

[^2]Table 2. Summary of Crystallographic Data for $\left(R^{*}, R^{*}\right)$-cis- $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}(6)$

chemical formula	$\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pt}$
fw	895.83
space group	monoclinic, $P 2{ }_{1} / n$
a, \AA	12.658(2)
b, \AA	21.688(4)
c, \AA	14.340(2)
β, deg	97.25(1)
V, \AA^{3}	3905.2
Z	4
$T, \mathrm{~K}$	293
$\varrho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.524
μ, cm^{-1}	37.5
$F(000)$	1792
R^{a}	0.027
$R_{\text {w }}{ }^{\text {b }}$	0.032
$S^{\text {c }}$	1.11
${ }^{a} R=\left(\sum\| \| F_{0}\left\|-\left\|F_{\mathrm{c}}\right\|\right\|\right) /$ ${ }^{c} S=$ goodness of fit $=$ number of unique reflecti	$w\left(\left\|F_{0}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \sum w$ $2^{2 /(m-n)]^{1 / 2}, \text { whe }}$ ber of variables.

atoms (from the ΔF map for the methyl ligand, and at calculated positions for the phenyl and $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ groups $)$ were positioned geometrically and were not refined; the OH hydrogen atom was not located. Refinement on $F, 460$ parameters, gave the R values shown in Table 2, with the weighting scheme $w=\left[\sigma^{2}(F)+\right.$ $\left.0.0004 F^{2}\right]^{-1}$, maximum shift/error ratio $=0.1$, and maximum and minimum heights in the final difference map of +1.26 and -0.90 e \AA^{-3}, with all major features near the platinum atom. Atomic scattering factors for the neutral atoms, and real and imaginary dispersion terms were used, ${ }^{28}$ and data reduction and refinement computations were performed with XTAL 2.6. ${ }^{29}$ Positional and isotropic displacment parameters of non-hydrogen atoms are listed in Table 3

Results

Precursors. The known planar platinum(II) hydroxo complexes trans $-\mathrm{Pt}(\mathrm{OH})(\mathrm{Ph})\left(\mathrm{PEt}_{3}\right)_{2}(\mathbf{1})$, cis $-\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2}(2)$, and $\mathrm{Pt}(\mathrm{OH})(\mathrm{R})($ dppe $)\left[\mathrm{R}=\mathrm{Me}(3), \mathrm{CF}_{3}(4)\right]$ are made by the standard method, ${ }^{15}$ or a slight modification thereof, from the appropriate halide (Scheme 1). The new hydroxo complex cis$\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})(\mathrm{pdmp})(5)$ can be made either in this way or by direct reaction of aqueous KOH with $\mathrm{PtCl}(\mathrm{Me})$ (pdmp) in THF. Its ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a pair of singlets at $\delta 29.5$ (${ }^{1} J_{\mathrm{PIP}}=1857 \mathrm{~Hz}, \mathrm{P}$ trans to Me) and $\delta 7.1\left({ }^{1} J_{\mathrm{PiP}}=3309 \mathrm{~Hz}\right.$, P trans to OH), the $\mathrm{Pt}-\mathrm{P}$ coupling constants being normal for hydroxoplatinum(II) complexes. ${ }^{24}$ As is often the case for hydroxoplatinum(II) complexes, the OH signal could not be located in the ' H NMR spectrum, but the IR spectrum in THF showed a $v(\mathrm{OH})$ band at $3590 \mathrm{~cm}^{-1}$.

Although 2 has been isolated from trans $-\mathrm{PtI}(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2},{ }^{25}$ its configuration was not assigned. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum consists of a pair of doublets (${ }^{2} J_{\mathrm{PP}}=10.7 \mathrm{~Hz}$) with ${ }^{195} \mathrm{Pt}$ satellites at $\delta 26.9\left({ }^{1} J_{\mathrm{PtP}}=1745 \mathrm{~Hz}\right)$ and $\delta 18.7\left({ }^{1} J_{\mathrm{PTP}}=3608\right.$ Hz). These can be assigned on the basis of the $\mathrm{Pt}-\mathrm{P}$ coupling constants to the phosphorus atoms trans to Me and OH respectively, in a cis-planar arrangement. In agreement, the Pt Me resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum appears at $\delta 1.10$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ as a doublet of doublets with ${ }^{195} \mathrm{Pt}$ satellites, indicative of coupling to two chemically inequivalent phosphorus atoms (${ }^{3} J_{\mathrm{PH}}$ $\left.=4.4,7.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{PtH}}=64.6 \mathrm{~Hz}\right)$. In this case, the OH resonance is observed at $\delta 1.55\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ and shows well-resolved coupling to both ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the solvento intermediate $\left[\mathrm{PtMe}\right.$ (acetone) $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows just a singlet at $\delta 32.8\left({ }^{1} J_{\mathrm{PtP}}=3161 \mathrm{~Hz}\right)$ and therefore

[^3]Table 3. Non-Hydrogen Positional and Isotropic Displacement Parameters for (R^{*}, R^{*})-cis-PtMe $\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$ (6)

	$x / 2$	y / b	z / c	$U_{\text {eq }}{ }^{\text {a }}$
Pt	0.22641 (2)	$0.16045(0)$	$0.24938(1)$	0.0338(1)
$\mathrm{P}(1)$	$0.3245(1)$	$0.08742(6)$	$0.3415(1)$	$0.0357(7)$
C(111)	0.2772(4)	0.0618(2)	0.4511 (4)	0.042(3)
C(112)	$0.1904(5)$	0.0221 (3)	0.4471 (5)	0.057(4)
C(113)	$0.1505(5)$	0.0043 (3)	$0.5288(6)$	0.071(5)
C(114)	$0.1985(7)$	$0.0239(4)$	$0.6137(5)$	0.077(5)
C(115)	$0.2848(7)$	$0.0621(4)$	0.6190 (5)	0.075(5)
C(116)	0.3243(5)	$0.0819(3)$	0.5381 (4)	0.057(4)
C(121)	0.3420 (4)	0.0129(2)	0.2841 (4)	0.042(3)
C(122)	$0.3015(5)$	$0.0062(3)$	$0.1903(4)$	0.057(4)
C(123)	$0.3176(7)$	-0.0492(4)	$0.1462(5)$	0.078(5)
C(124)	$0.3702(6)$	-0.0973(3)	0.1948 (7)	0.082(6)
C(125)	$0.4051(6)$	-0.0909(3)	0.2881 (7)	0.076(5)
C(126)	0.3922(5)	-0.0365(3)	$0.3338(5)$	0.057(4)
C(131)	0.4554(4)	$0.1175(3)$	0.3840 (4)	0.041(3)
C(132)	0.4599(5)	0.1799(3)	$0.4078(4)$	0.053(4)
C(133)	0.5554(6)	0.2071 (3)	0.4443 (5)	0.072(5)
C(134)	0.6467 (6)	$0.1739(4)$	$0.4578(5)$	0.078(5)
C(135)	0.6425(5)	$0.1120(4)$	0.4360 (5)	0.069(5)
C(136)	$0.5484(5)$	$0.0838(3)$	0.3983(5)	0.053(4)
$\mathrm{P}(2)$	0.3486(1)	$0.18035(7)$	0.1474 (1)	$0.0367(8)$
C(211)	0.4773 (5)	0.1408 (3)	0.1520 (5)	$0.053(4)$
C(212)	$0.4838(6)$	$0.0848(4)$	0.1092 (7)	0.091(6)
C(213)	0.580(1)	0.0526(5)	0.116 (1)	0.134(9)
C(214)	0.669 (1)	$0.0767(7)$	0.164 (1)	0.15 (1)
C(215)	$0.6639(7)$	$0.1314(7)$	0.2068(7)	0.116 (8)
C(216)	0.5685(5)	$0.1645(4)$	0.2020 (5)	0.073(5)
C(221)	0.2937 (5)	$0.1660(3)$	$0.0245(4)$	0.048(3)
C(222)	$0.1944(5)$	0.1393 (3)	0.0050 (4)	0.053(4)
C(223)	$0.1530(6)$	$0.1266(4)$	-0.0871(5)	0.075(5)
C(224)	$0.2080(8)$	$0.1412(5)$	-0.1600(6)	0.108(7)
C(225)	$0.3065(9)$	$0.1658(6)$	-0.1411(6)	0.148(9)
C(226)	$0.3498(7)$	$0.1775(5)$	-0.0495(6)	0.115 (7)
C(231)	0.3907(4)	$0.2614(2)$	0.1539(4)	0.041 (3)
C(232)	0.3569(5)	0.2993(3)	0.2209(5)	0.063(4)
C(233)	0.3910 (6)	0.3611 (3)	0.2299(6)	0.073(5)
C(234)	0.4570 (6)	$0.3836(3)$	$0.1705(6)$	0.071 (5)
C(235)	0.4917(8)	0.3463 (4)	0.1045 (6)	0.098(6)
C(236)	0.4581 (7)	0.2862(3)	0.0961 (5)	0.078(5)
C(3)	0.1326 (4)	0.2286 (3)	0.1734 (4)	0.047 (3)
$\mathrm{C}(41)$	$0.1169(5)$	0.2160 (3)	0.3950 (5)	0.057(4)
$\mathrm{O}(411)$	0.0639(4)	$0.2625(2)$	0.3843 (4)	$0.082(4)$
$\mathrm{O}(412)$	$0.2011(4)$	0.2126(2)	$0.4608(4)$	0.081(3)
C(413)	0.2326(8)	0.2662(5)	$0.5150(7)$	0.129(8)
$\mathrm{C}(42)$	$0.1019(5)$	$0.1578(3)$	$0.3385(5)$	0.052(4)
$\mathrm{C}(43)$	-0.0105(5)	$0.1538(3)$	0.2906 (5)	$0.064(4)$
$\mathrm{O}(431)$	-0.0859(4)	0.1484 (3)	0.3583(4)	$0.098(4)$
C (44)	-0.0190(6)	$0.0957(4)$	0.2332(6)	0.076(5)
$\mathrm{O}(441)$	-0.0108(6)	0.0434 (3)	0.2609 (5)	$0.134(5)$
$\mathrm{O}(442)$	-0.0403(5)	0.1071 (3)	0.1431 (5)	0.103(4)
C(443)	-0.047(1)	0.0522(7)	0.0829(9)	0.19(1)

$$
{ }^{a} U_{\mathrm{eq}}=1 / 3 \sum_{i} \sum_{j} U_{i j} a_{i} a_{j} a_{j} a_{i}{ }_{i} \mathrm{a}_{j} .
$$

Scheme 1

$$
\operatorname{PtX}(\mathrm{R}) \mathrm{L}_{2} \xrightarrow[\substack{\text { acetone } \\ \text { or THF }}]{\mathrm{AgBF}_{4}}\left[\mathrm{PtR} \text { (solvent) } \mathrm{L}_{2}\right] \mathrm{BF}_{4} \xrightarrow[\text { 2. } \mathrm{KOH}]{\text { 1. THF }} \mathrm{Pt}(\mathrm{OH})(\mathrm{R}) \mathrm{L}_{2}
$$

must be trans. The first product obtained on treatment of trans$\left[\mathrm{PtMe}(\mathrm{THF})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$with aqueous KOH also shows a singlet $\left[\delta_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 30.0,{ }_{J_{\mathrm{P} \mathrm{P}}}=3273 \mathrm{~Hz}\right.$] and is probably trans-Pt$(\mathrm{OH})(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2}$; in THF it isomerizes over a period of hours at room temperature to the $c i s$-isomer 2.

Reactions. Complexes 1-5 do not react with unactivated olefins such as ethylene, 1-hexene, or cyclohexene. However, an excess of the more electrophilic olefin dimethyl maleate reacts with the cis-(hydroxo)methyl complexes 2,3 , and 5 in benzene or THF at room temperature over a period of $2-5$ days to give colorless, microcrystalline solids of general formula $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\} \mathrm{L}_{2}\left[\mathrm{~L}_{2}=2 \mathrm{PPh}_{3}(6)\right.$, dppe (7), pdmp (8)] arising from apparent insertion of the olefin into

Figure 1. Molecular structure of $\left(R^{*}, R^{*}\right)$-cis-PtMe $\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}\right.$ $\left.(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}(6)$, showing the crystallographic labeling scheme.
the $\mathrm{Pt}-\mathrm{OH}$ bond; there was no observable reaction under the same conditions between dimethyl maleate and both 1 and 4. Compounds 6-8 can be recrystallized from dichloromethane/ ether, 6 being isolated in 84% yield. The other, more soluble compounds are also formed almost quantitatively, as shown by ${ }^{31}$ \{ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, but the yields after recrystallization were only $c a .20 \%$. The structural formulations rest on ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic data (Table 1), IR spectra, and an X-ray structural analysis of 6 (see below).

The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 shows a pair of singlets due to the inequivalent ester methyl groups at $\delta 3.63$ and 3.75 ; the former shows a small coupling to ${ }^{195} \mathrm{Pt}$ and is therefore assigned to the $\mathrm{CO}_{2} \mathrm{Me}$ group in the α-position to platinum. There is a pair of multiplets at $\delta 2.97$ and $4.74\left(J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right)$ due to the methine protons; the former shows a typical two-bond coupling to ${ }^{195} \mathrm{Pt}(108 \mathrm{~Hz})$ and couplings to the phosphorus atoms ($16.6,10.8 \mathrm{~Hz}$), hence it must be due to the proton H^{A} attached to the platinum-bound carbon atom. The presence of the CHOH function is evident both from a ${ }^{195} \mathrm{Pt}$ coupled doublet in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 2.34\left({ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PiH}}=2.8\right.$ Hz) and from a strong $\mathrm{O}-\mathrm{H}$ stretching band at $3580 \mathrm{~cm}^{-1}$ in the IR spectrum (KBr disk). The IR spectrum also shows typical ester $\mathrm{C}=\mathrm{O}$ stretching bands at 1730 and $1680 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra of 7 and 8 are essentially similar to that of 6 , though the typical $\mathrm{Pt}-\mathrm{Me}$ resonance, which appears as a doublet of doublets with ${ }^{195} \mathrm{Pt}$ satellites at $c a . \delta 0.5$ in 6 and 7 , could not be located in 8 , probably because it is less shielded and is masked by PMe_{2} resonances. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $6-8$ confirm the presence of cis-inequivalent phosphorus atoms. The resonance corresponding to P trans to methyl shows a $\mathrm{Pt}-\mathrm{P}$ coupling of $1800-2000 \mathrm{~Hz}$, whereas for the other resonance the $\mathrm{Pt}-\mathrm{P}$ coupling is $2300-2500 \mathrm{~Hz}$, typical of ${ }^{1} J_{\mathrm{PtP}}$ trans to a σ-bonded carbon atom carrying an electron-withdrawing substituent such as $\mathrm{CO}_{2} \mathrm{Me}$ or $\mathrm{COMe}{ }^{24}$

The X-ray study confirms that 6 is a typical square-planar platinum(II) complex. A diagram of the structure is shown in Figure 1, and selected bond lengths and bond angles are given in Table 4. The $\mathrm{Pt}-\mathrm{CH}_{3}$ and $\mathrm{Pt}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2}-\right.$ Me) bond lengths differ significantly [2.111(6) and 2.152(7) \AA, respectively]; the lengthening effect on the $\mathrm{Pt}-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ separation of the electron-withdrawing $\mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{CH}(\mathrm{OH})$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ substituents is similar to that exerted by the COPh group in $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{2} \mathrm{COPh}\right)($ dppe $){ }^{30}$ In agreement with the

[^4] Am. Chem. Soc. 1973, 95, 3028.

Table 4. Selected Bond Distances (\AA) and Angles (deg) in $\left(R^{*}, R^{*}\right)$-cis- $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{6})$

$\mathrm{Pt}-\mathrm{P}(1)$	$2.320(1)$	$\mathrm{Pt}-\mathrm{P}(2)$	$2.300(2)$
$\mathrm{Pt}-\mathrm{C}(3)$	$2.111(6)$	$\mathrm{Pt}-\mathrm{C}(42)$	$2.152(7)$
$\mathrm{C}(41)-\mathrm{O}(411)$	$1.212(8)$	$\mathrm{C}(41)-\mathrm{O}(412)$	$1.333(8)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.498(9)$	$\mathrm{O}(412)-\mathrm{C}(413)$	$1.43(1)$
$\mathrm{C}(42)-\mathrm{C}(43)$	$1.502(9)$	$\mathrm{C}(43)-\mathrm{O}(431)$	$1.45(1)$
$\mathrm{C}(43)-\mathrm{C}(44)$	$1.50(1)$	$\mathrm{C}(44)-\mathrm{O}(441)$	$1.20(1)$
$\mathrm{C}(44)-\mathrm{O}(442)$	$1.31(1)$	$\mathrm{O}(442)-\mathrm{C}(443)$	$1.47(2)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$97.80(5)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(3)$	$176.3(2)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(42)$	$91.3(2)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(3)$	$85.4(2)$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(42)$	$170.0(2)$	$\mathrm{C}(3)-\mathrm{Pt}-\mathrm{C}(42)$	$85.4(2)$

Figure 2. Possible stereochemistry of addition of hydroxoplatinum(II) complexes to dimethyl maleate.
trend evident from the $\mathrm{Pt}-\mathrm{P}$ coupling constants, the $\mathrm{Pt}-\mathrm{P}$ distance trans to $\mathrm{Me}[2.320(1) \AA$] is significantly greater than that trans to $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ [2.300(2) \AA], indicative of the higher trans influence of the methyl group. Bond lengths and angles within the $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ and PPh_{3} groups are unexceptional.

Although the adjacent chiral carbon centers in the $\mathrm{PtCH}\left(\mathrm{CO}_{2}-\right.$ $\mathrm{Me}) \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Me}$ group imply the possibility of diastereomers, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $6-8$ show the presence of only one species; the reactions of dimethyl maleate with 2 , 3 , and 5 are, therefore, completely ($>95 \%$) stereoselective. If the $\mathrm{Pt}-\mathrm{OH}$ group undergoes syn addition to dimethyl maleate, the product will be the threo complex, whereas anti addition will give the erythro isomer (Figure 2). The X-ray structure of 6 shows that the $\mathrm{PtCH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ group has the (R^{*}, R^{*})-absolute configuration, i.e. it is priority-reflective, ${ }^{31}$ corresponding to the threo complex. Thus the stereochemistry of addition of the $\mathrm{Pt}-\mathrm{OH}$ group of 2 to dimethyl maleate is syn; the same is likely to be true also for 3 and 5 .

Monitoring of the reactions of $\mathbf{3}$ and 5 with dimethyl maleate in $\mathrm{C}_{6} \mathrm{D}_{6}$ by ${ }^{31} \mathrm{P}$ NMR spectroscopy gave no evidence for any intermediate. In the case of 2, however, although formation of 6 is apparent even after 0.5 h , a singlet at $\delta 29.7$ (${ }^{1} \mathrm{JPP}=3281$ Hz) also appears immediately on mixing the reagents; this disappears slowly as 6 is formed. We believe that this peak is due to trans- $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2}$, which is formed as the kinetic product of reversible displacement of PPh_{3} from 2 (probably that trans to methyl) by dimethyl maleate and subsequent reentry of PPh_{3}. Addition of $\mathrm{PPh}_{3}(1: 1$ or $10: 1$) suppresses (though not completely) the formation of trans $-\mathrm{Pt}(\mathrm{OH})(\mathrm{Me})$ $\left(\mathrm{PPh}_{3}\right)_{2}$ but does not affect the formation of 6 .

The insertion of dimethyl maleate into the $\mathrm{Pt}-\mathrm{OH}$ bonds is irreversible, unlike the corresponding insertion of alkynes. ${ }^{32}$ Treatment of 6 in benzene with CO (1 bar) displaces one of the PPh_{3} ligands and, although the product has not been completely characterized, it is clearly not a hydroxo- or hydroxycarbonyl complex and the $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ fragment appears to be intact.

[^5](32) Jin, H. PhD Thesis, The Australian National University, 1990.

In contrast with dimethyl maleate, dimethyl fumarate does not react with 2 , either at room temperature over a 10 -day period or at $50-70^{\circ} \mathrm{C}$ over 24 h , although it does catalyze the cis to trans isomerization of 2 . However, dimethyl fumarate reacts slowly with 5 in benzene to give a colorless half-ester complex $\mathrm{PtMe}\left\{(E)-\mathrm{OC}(\mathrm{O}) \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right\}(\mathrm{pdmp})(9)$, presumably with elimination of methanol; there was no evidence for the formation of an insertion product analogous to 8 . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right]$ NMR spectroscopic parameters are similar to those of $\mathbf{5}$, indicating that an O-bonded ligand is present in addition to the methyl group and pdmp. The ${ }^{1} \mathrm{H}$ NMR spectrum shows just one 3 H singlet due to $\mathrm{CO}_{2} \mathrm{Me}$ and a pair of doublets at $\delta 7.36$ and 7.77 (${ }^{3} J_{\mathrm{HH}}=15.7 \mathrm{~Hz}$) arising from the trans-olefinic protons. A similar reaction occurs more slowly when 3 is heated with dimethyl fumarate but other unidentified products are also formed.

Discussion

We have established that the $\mathrm{Pt}-\mathrm{OH}$ bond of cis $-\mathrm{Pt}(\mathrm{OH})-$ $(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)_{2}$ (2) undergoes stereospecific ($>95 \%$) syn addition to the $\mathrm{C}=\mathrm{C}$ bond of dimethyl maleate to give the $\mathrm{Pt}-\mathrm{C}$ σ-bonded complex cis- $\mathrm{PtMe}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}$ $\left(\mathrm{PPh}_{3}\right)_{2}$ (6); the corresponding complexes 7 and 8 containing dppe and pdmp, respectively, are probably formed with the same stereochemistry. A similar addition of the $\mathrm{Pt}-\mathrm{NHPh}$ bond of the hydrido(anilido) complex trans $-\mathrm{PtH}(\mathrm{NHPh})\left(\mathrm{PEt}_{3}\right)_{2}$ to acrylonitrile to give trans $-\mathrm{PtH}\left\{\mathrm{CH}(\mathrm{CN})\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)\right\}\left(\mathrm{PEt}_{3}\right)_{2}$ has been observed, although the stereochemistry of this reaction is unknown. ${ }^{33}$ The stereochemistry we observe is not consistent with dissociation of OH^{-}from the coordination sphere and subsequent external attack on coordinated dimethyl maleate, for which anti addition leading to the threo product (Figure 2) would be expected. The syn addition is most readily explained in terms of a concerted, cis-migratory insertion in a five-coordinate intermediate $\mathrm{Pt}(\mathrm{OH})(\mathrm{Me}) \mathrm{L}_{2}\left(\eta^{2}-\mathrm{Z}-\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$. We cannot exclude the possibility that insertion is preceded by dissociation of PPh_{3} in the case of 2 or by one-ended dissociation of dppe or pdmp in the cases of $\mathbf{3}$ and 5 . The lability of PPh_{3} in $\mathbf{2}$ is evident from the observation that both dimethyl maleate and dimethyl fumarate catalyze the cis to trans isomerization of 2. However, the fact that free PPh_{3} slows the isomerization without affecting the insertion seems more consistent with the notion that insertion occurs in a five-coordinate precursor. Our results agree with those of Bryndza et al., ${ }^{16.17}$ who reported that the insertion of $\mathrm{C}_{2} \mathrm{~F}_{4}$ into the $\mathrm{Pt}-\mathrm{OMe}$ bond of $\mathrm{Pt}(\mathrm{OMe})(\mathrm{Me})$ (dppe) proceeds by reversible formation of a $1: 1$ adduct and rate-limiting insertion into the $\mathrm{Pt}-\mathrm{OMe}$ bond, without dissociation of OMe^{-}from the coordination sphere. Also in agreement with this work is our failure to observe any insertion of dimethyl maleate into the $\mathrm{Pt}-\mathrm{Me}$ bonds of 2,3 , and 5.

It is well-known that hard nucleophiles, such as $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{OH}^{-}\right)$, $\mathrm{R}_{2} \mathrm{NH}, \mathrm{OMe}^{-}(\mathrm{MeOH}), \mathrm{O}_{2} \mathrm{CMe}^{-}$, and $[\mathrm{RCOCHCOR}]^{-}$, attack olefins coordinated to palladium(II) and platinum(II), in complexes of the type $\left[\mathrm{MCl}_{3}\left(\eta^{2} \text {-olefin }\right)\right]^{-}$or $\mathrm{MCl}_{2}\left(\eta^{2}: \eta^{2}\right.$-diene $)$, in a trans manner, whereas soft nucleophiles, such as H^{-}or Me^{-} undergo cis-migratory insertion. ${ }^{34-36}$ This behavior has been rationalized by ab initio MO calculations on model complexes $\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (nucleophile) $)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) .{ }^{37}$ In the case of hard nucleophiles, the energy difference between the HOMO based on the metal-nucleophile bond and the LUMO based on the π^{*} orbital

[^6]of the olefin is too large, hence the reaction is charge controlled, whereas for the soft nucleophiles the HOMO is sufficiently high in energy that frontier orbital controlled cis-migratory insertion becomes possible. There has, however, been considerable disagreement about the mode of addition of water to olefins in the palladium(II)-catalyzed oxidation of olefins to carbonyl compounds (the Wacker process). Although stereochemical experiments indicate that trans addition is likely, ${ }^{36}$ there is evidence that both cis- and trans-hydroxypalladation can occur, depending on the nature of the olefin, on the auxiliary ligands, and on the reaction conditions, and that cis addition is the key step in the process leading to the carbonyl compounds. ${ }^{38}$
In the $\mathrm{Pt}(\mathrm{OH})(\mathrm{R}) \mathrm{L}_{2}$ and $\mathrm{Pt}(\mathrm{OMe})(\mathrm{R}) \mathrm{L}_{2}$ complexes, cismigratory insertions into the $\mathrm{Pt}-\mathrm{O}$ bond seem to be limited to those alkenes bearing strongly electron-withdrawing substituents ($\mathrm{F}, \mathrm{CO}_{2} \mathrm{Me}$). These substituents lower the LUMO of the alkene, presumably providing a better match with the HOMO of the $\mathrm{Pt}-\mathrm{OH}$ bond. The presence of a strongly electron-donating alkyl ligand may raise the energy of this HOMO, again enabling a closer match with the LUMO of the alkene, although it remains surprising that no insertion is observed into the $\mathrm{Pt}-\mathrm{Me}$ bond. Replacement of CH_{3} by CF_{3} acts in the opposite sense, hence insertion into the $\mathrm{Pt}-\mathrm{O}$ bond is not observed in this case. The failure of dimethyl fumarate to insert into the $\mathrm{Pt}-\mathrm{OH}$ bonds of 2.5 may be due to steric hindrance to coordination of the $\mathrm{C}=\mathrm{C}$ bond; thus the $\mathrm{Pt}-\mathrm{OH}$ bond of the more basic and sterically less hindered complex 5 preferentially attacks a carboxylate carbon atom of dimethyl fumarate, a process analogous to ester hydrolysis.

Finally, since dimethyl malate, the hydration product of dimethyl maleate, can be obtained by aqueous acid cleavage of the $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ group from 6, the reactions described here serve as a model for two steps of a hypothetical catalytic cycle for alkene hydration based on coordination of the alkene to a hydroxometal complex. Such a process probably occurs in the reported hydration of diethyl maleate by hydroxopalladium(II) complexes. ${ }^{7}$ Complex 2, however, does not catalyze the hydration of cyclohexane to cyclohexanol, or of 1 -hexene to hexanol, at $60^{\circ} \mathrm{C}$, and precursors that catalyze the hydration of a wider range of alkenes remain to be discovered.

Supporting Information Available: Details of structure refinement for $\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and tables of atomic coordinates for the hydrogen atoms and displacement parameters, complete listing of bond distances, bond angles, and torsion angles, and selected least squares planes (17 pages); listing of structure factor amplitudes (16 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

[^7]
[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 15, 1995.
 (1) Present address: Department of Chemistry, The University of Westem Ontario, London, Ontario, Canada N6A 5BY.
 (2) Reported in: Roth, J. F. Chem. Eng. News 1993, May 31, 27
 (3) Horton, H. R.; Moran, L. A.; Ochs, R. S.; Rawn, J. D.; Scrimgeour, K. G. Principles of Biochemistry; Neil Patterson: New York, 1993; Chapter 13.
 (4) James, B. R.; Louie, J. Inorg. Chim. Acta 1969, 3, 568.
 (5) Bzhasso, N. A.; Pyatnitskii, M. P. Zh. Prikl. Khim. 1969, 42, 1610; Chem. Abstr. 1969, 71, 101239 f.
 (6) Abbreviations: dppe $=1,2$-bis(diphenylphosphino)ethane, $\mathrm{Ph}_{2} \mathrm{PCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{PPh}_{2}$; dcpe $=1,2$-bis(dicyclohexylphosphino)ethane, $\mathrm{Cy}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}-$ $\mathrm{PCy}_{2} ;$ pdmp $=o$-phenylenebis(dimethylphosphine), $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2} ; \mathrm{COD}$ $=1,5$-cyclooctadiene, $\mathrm{C}_{8} \mathrm{H}_{12} ; \mathrm{C}_{6} \mathrm{H}_{9}=1$-cyclohexenyl.
 (7) Ganguly, S.; Roundhill, D. M. J. Chem. Soc., Chem. Commun. 1991, 639; Organometallics 1993, 12,4825
 (8) Jensen, C. M.; Trogler, W. C. Science (Washington, D.C.) 1986, 233, 1069. Trogler, W. C. J. Chem. Educ. 1988, 65, 294.

[^1]: ${ }^{a}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, except where stated otherwise; coupling constants in Hz . Quoted multiplicities do not include ${ }^{195} \mathrm{Pt}$ satellites. ${ }^{b} \delta 1.7-2.4$ (br m, PCH_{2}). ${ }^{c}$ Measured in $\mathrm{C}_{6} \mathrm{D}_{6} .{ }^{d} \delta 1.45$ (d, $3 \mathrm{H}, \mathrm{PMe},{ }^{2} J_{\mathrm{PH}} 8.8, J_{\mathrm{PH}} 17.9$), 1.81 (d, 3H, PMe, ${ }^{2} J_{\mathrm{PH}}=9.2,{ }^{3} J_{\mathrm{PH}}=18.4$). ${ }^{e}$ Overlaps PMe_{2} resonances.

[^2]: (26) Churchill, M. R.; Kalra, K. L. Inorg. Chem. 1974, 13, 1427.
 (27) Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M.; Krüger, C.; Goddard, R., Eds.; Oxford University Press: London, 1985; p 175.

[^3]: (28) International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol 4.
 (29) XTAL 2.6 Reference Manual; Hall, S..R., Stewart, J. M., Eds.; Universities of Western Australia and Maryland: Nedlands, Australia, and College Park, MD, 1989.

[^4]: (30) Bennett, M. A.; Robertson, G. B.; Whimp, P. O.; Yoshida, T. J.

[^5]: (31) Carey, F. A.; Kuehne, M. E. J. Org. Chem. 1982, 47, 3811.

[^6]: (33) Cowan, R. J.; Trogler, W. C. J. Am. Chem. Soc. 1989, III, 4750.
 (34) Maitlis, P. M.; Espinet, P.; Russell, M. J. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 6, p 356 and references cited therein.
 (35) Hartley, F. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 6, p 664 and references cited therin.

[^7]: JA950830Q
 (36) (a) Stille, J. K.; James, D. E.; Hines, L. F. J. Am. Chem. Soc. 1973, 95, 5062. (b) Stille, J. K.; James, D. E. J. Organomet. Chem. 1976, 108, 401. (c) Stille, J, K.; Divakarumi, R. J. Organomet. Chem. 1979, 169, 239. (d) Bäckvall, J. E.; Akermark, B.; Ljunggren, S. O. J. Am. Chem. Soc. 1979, 101, 2411. (d) Akermark, B.; Söderberg, B. C.; Hall, S. S. Organometallics 1987, 6, 2608.
 (37) (a) Bäckvall, J. E.; Björkman, E. E.; Pettersson, L.; Siegbahn, P. J. Am. Chem. Soc. 1984, I06, 4369. (b) Fujimoto, H.; Yamasaki, T. J. Am. Chem. Soc. 1986, 108, 571.
 (38) For leading references, see: (a) Henry, P. M. Palladium-Catalyzed Oxidation of Hydrocarbons; D. Reidel: Dordrecht, Holland; 1980; pp 4184. (b) Gregor, N.; Henry, P. M. J. Am. Chem. Soc. 1981, 103, 681. (c) Wan, W. K.; Zaw, K.; Henry, P. M. J. Mol. Catal. 1982, I6, 81. (d) Gregor, N.; Zaw, K.; Henry, P. M. Organometallics 1984, 3, 1251; (e) Francis, J. W.; Henry, P. M. Organometallics 1991, IO, 3498. (f) Zaw, K.: Henry, P. M. Organometallics 1992, Il, 2008. (g) Francis, J. W.; Henry, P. M. Organometallics 1992, 11, 2832.

